ISIE Socioeconomic Metabolism Section perpetual online conference

Critical materials demand in the green transition: a review

Takuma Watari

Researcher, National Institute for Environmental Studies PhD candidate, The University of Tokyo

Energy-Metal Nexus

Achzet et al. (2009)

Energy-Metal Nexus

Growing number of studies are emerging

World Bank (2017, 2020)

What are the progress and limitations in existing studies?

Review of critical metal dynamics to 2050 for 48 elements

Takuma Watari, Keisuke Nansai and Kenichi Nakajima (2020) "**Review of critical metal dynamics to 2050 for 48 elements**" *Resource Conservation and Recycling*, 155, 104669 <u>https://doi.org/10.1016/j.resconrec.2019.104669</u>

	Resources, Conservation & Recycling 155 (2020) 104669	
	Contents lists available at ScienceDirect	Resource Conser Recycli
	Resources, Conservation & Recycling	X
ELSEVIER	journal homepage: www.elsevier.com/locate/resconrec	

Review

Review of critical metal dynamics to 2050 for 48 elements

Takuma Watari^{a,b,*}, Keisuke Nansai^{a,c}, Kenichi Nakajima^a

⁶ Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan ^b Graduate School of Prontier Sciences, The University of Tokyo, 5-1-5 Kashwanoha, Kashiwa, Chiba, 277-8563, Japan ^c SKA, School of Physics, Faculty of Science, The University of Sydney, Camperdown, 2006, NSW, Australia

This study provides;

- Critical review of 88 studies covering 48 metals
- Five unaddressed issues in existing studies
- Data set containing predicted global demand gathered from various relevant articles (546 data points)

Demand projection dataset

Metals related to solar PV

Metals related to EVs and wind -

Takuma Watari et al. (2020) Resource Conservation and Recycling, 155, 104669

∕⊒

Future of major metals

https://doi.org/10.1016/j.resconrec.2020.105107

What are the limitations and unaddressed issues in previous studies?

Number of publications each element

No long-term demand outlook is available for some high criticality metals

Coverage of full life cycle

		Critic	cality																								
		As	Rh	In	Ag	Re	Au	Sb	Pt	Ir	Pd	Se	Pb	Ru	Cd	Zr	Cr	Те	Eu	Sc	Sn	Er	Nb	Zn	Мо		
Extraction/processing	R	0	2	21	15	2	2	1	15	1	3	12	6	3	13	3	7	21	6	0	5	1	5	7	5		
Manufacturing		1	4	31	21	3	2	1	23	1	6	19	10	6	21	4	12	30	7	1	8	1	8	13	11		
Waste management	\bigcirc	1	2	18	15	1	2	1	16	1	4	10	6	2	11	2	7	18	2	0	5	1	5	7	5		
Trade		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0		
Environment	\oslash	0	0	1	1	0	0	0	2	0	0	1	1	0	0	1	1	1	1	0	2	1	1	2	1		
Social		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
				Dy	Mn	Tb	Pr	Nd	Со	Gd	Ge	La	Hf	Y	Ga	Cu	V	Ce	Sm	Mg	Та	Ni	Li	W	Ti	В	Si
))	21	9	11	10	23	15	5	7	9	2	10	14	15	5	8	3	4	3	13	26	2	6	2	3
	_			30	11	11	13	36	21	8	12	13	4	13	23	28	9	10	4	9	6	22	37	3	9	3	7
Lowest Highest	t	E	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	18	6	6	8	20	13	3	7	5	1	5	12	14	5	4	0	5	3	10	24	1	6	1	3
				2	1	2	2	2	1	1	0	1	0	2	0	0	0	1	1	0	0	1	4	0	0	0	0
		X	7	3	1	1	2	3	1	1	0	2	1	2	1	4	1	2	0	1	0	1	1	1	1	1	1
				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The social and environmental implications induced by growth in metals demand have been barely quantified

Takuma Watari et al. (2020) Resource Conservation and Recycling, 155, 104669

1.1

Coverage of full life cycle

		Criti	cality																								
		As	Rh	In	Ag	Re	Au	Sb	Pt	lr	Pd	Se	Pb	Ru	Cd	Zr	Cr	Те	Eu	Sc	Sn	Er	Nb	Zn	Мо		
Extraction/processing	<u></u>	0	2	21	15	2	2	1	15	1	3	12	6	3	13	3	7	21	6	0	5	1	5	7	5		
Manufacturing		1	4	31	21	3	2	1	23	1	6	19	10	6	21	4	12	30	7	1	8	1	8	13	11		
Waste management	$\langle \bigcirc \rangle$	1	2	18	15	1	2	1	16	1	4	10	6	2	11	2	7	18	2	0	5	1	5	7	5		
Trade		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0		
Environment	\oslash	0	0	1	1	0	0	0	2	0	0	1	1	0	0	1	1	1	1	0	2	1	1	2	1		
Social	○ ₀	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
				Dy	Mn	Tb	Pr	Nd	Со	Gd	Ge	La	Hf	Y	Ga	Cu	V	Ce	Sm	Mg	Та	Ni	Li	W	Ti	В	Si
			×	21	9	11	10	23	15	5	7	9	2	10	14	15	5	8	3	4	3	13	26	2	6	2	3
				30	11	11	13	36	21	8	12	13	4	13	23	28	9	10	4	9	6	22	37	3	9	3	7
Lowest Highe	est	E	\rightarrow	18	6	6	8	20	13	3	7	5	1	5	12	14	5	4	0	5	3	10	24	1	6	1	3
		ŧ		2	1	2	2	2	1	1	0	1	0	2	0	0	0	1	1	0	0	1	4	0	0	0	0
		Ź	7	3	1	1	2	3	1	1	0	2	1	2	1	4	1	2	0	1	0	1	1	1	1	1	1
			<u>,</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Consideration of the spatial divergence between consuming and producing countries formed by international resource trade has been underemphasized

Progress in circular economy strategy

There has been little attention given to full array of circular economy strategies that include component reuse and remanufacturing

Metal linkages

The host-companion flower garden of metals

Only 13 % of the studies examined here (11 of 88) quantitatively consider metal linkages in their models.

Linked metal cycles of aluminum

Major metal flows in a carbon-constrained world

Takuma Watari, Keisuke Nansai, Damien Giurco, Kenichi Nakajima, Benjamin McLellan and Christoph Helbig (2020) "Global Metal Use Targets in Line with Climate Goals" Environmental Science and Technology https://pubs.acs.org/doi/full/10.1021/acs.est.0c02471

Takuma Watari et al. (2020) Environmental Science and Technology, 54, 12476–12483

Major metal flows in a carbon-constrained world

National Institute for Environmental Studies, Japan

Takuma Watari et al. (2020) Environmental Science and Technology, 54, 12476-12483

Major metal flows in a carbon-constrained world

We need to better understand the anthropogenic metal cycles and future availability in a system where multiple cycles are closely linked

Summary of five unaddressed issues

V ED	
\leq	

- i. No long-term demand outlook is available for some high criticality metals
- ii. The social and environmental implications induced by growth in metals demand have been barely quantified

 iii. Consideration of the spatial divergence between consuming and producing countries formed by international resource trade has been underemphasized

iv. There has been little attention given to various circular economy strategies that include component reuse and remanufacturing

v. The linkage between host and by-product metals has been scarcely modelled

Thank you for your kind attention!

watari.takuma@nies.go.jp

For more information on our recent work on climate-metal nexus;

- Takuma Watari, Benjamin McLellan, Damien Giurco, Elsa Dominish, Eiji Yamasue and Keisuke Nansai (2019)
 "Total Material Requirement for the Global Energy Transition to 2050: A Focus on Transport and Electricity"
 Resource Conservation and Recycling, 148, 91-103
 https://doi.org/10.1016/j.resconrec.2019.05.015
- Takuma Watari, Keisuke Nansai and Kenichi Nakajima (2021)
 "Major metals demand, supply, and environmental impacts to 2100: A critical review" Resource Conservation and Recycling, 164, 105107
 https://doi.org/10.1016/j.resconrec.2020.105107

